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Synthesis of single-qutrit circuits from Clifford+R gates
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We present two deterministic compilation algorithms for single-qutrit unitaries with O(log 1/ε) gate depth.
Each algorithm selects a nearby approximation to the target unitary and then exactly synthesizes the approxima-
tion over the Clifford + R basis. The first algorithm exhaustively searches over the group; while the second
algorithm searches only for Householder reflections. The exhaustive search algorithm yields an average R
count of 2.193(11) + 8.621(7) log10(1/ε), albeit with a time complexity of O(ε−4.4). The Householder search
algorithm results in a larger average R count of 3.20(13) + 10.77(3) log10(1/ε) at a reduced time complexity
of O(ε−0.42), greatly extending the reach in ε. These costs correspond asymptotically to 35% and 69% more
non-Clifford gates compared with synthesizing the same unitary with two qubits. Such initial results are
encouraging for using the R gate as the nontransversal gate for qutrit-based computation.
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I. INTRODUCTION

Various fields anticipate that quantum computing will
tackle problems that are intractable for classical computers,
but the large-scale architecture is still an active area of study.
While most devices are qubit-based, many have access to
higher levels and thus could be run as qudit-based platforms,
including trapped ions [1–3], transmons [4–12], Rydberg ar-
rays [13,14], photonic circuits [15], cold atoms [16,17], and
superconducting radio frequency (SRF) cavities [18]. While
experimentally more challenging, there are advantages to de-
veloping qudit-based systems from an algorithmic perspective
due to their enhanced effective connectivity, as native single-
qudit SU(d ) rotations replace nonlocal multiqubit circuits
[19–22]. In practice, this allows for lower gate fidelities for
the same algorithmic fidelity [11,23–32]. Such potential has
led to application-specific research in qudits across fields such
as material science [33–37], numerical optimization [38–41],
condensed matter [42–46], and particle physics [47–56].

Regardless of the qudit dimensionality, reaching the goal
of quantum utility requires fault-tolerant gate synthesis. That
is, one identifies a finite set of generators that can efficiently
approximate unitary operations to any required precision and

*Contact author: egustafson@usra.edu
†Contact author: hlamm@fnal.gov
‡Contact author: liu00994@umn.edu
§Contact author: emurairi@fnal.gov
�Contact author: shuchen.zhu@duke.edu

support quantum error correction for the logical gates in the
set. Fundamentally, though, the Eastin-Knill theorem [57]
prevents a universal gate set that is also transversal, i.e., not
all logical gates can be implemented in parallel across the
physical qudits. This constrains the gate sets G for large-scale
computation. Furthermore, the nontransversal gate counts NG
dominate the computation costs [58], but recent evidence
suggests they may not be as expensive as thought [59,60].
Here, we take the first steps beyond qubits by consider-
ing the fault-tolerant gate synthesis of d = 3 qudits, called
qutrits.

The prevalence of the qubits extends to fault-tolerant
gate synthesis. There, the Clifford group extended by T =
Diag(1, eiπ/4)—denoted (C + T)2—is the leading choice.
However, novel sets with non-Clifford transversal operations
[61–63] or those based on groups larger than the Clifford
group also exist [64–66]. Once this finite gate set is selected,
one must map all other circuit primitives to a gate set word.
While (C + T)2 does not result in the shortest word lengths
compared with larger groups [65–68], it has well-established
error correction schemes and experimental demonstrations, in
contrast with other gate sets and codes. In the case of qutrits,
three options have dominated the literature, which extend the
qutrit-Cliffords C3, although others exist [69,70]. The first
uses the generalized T3 = Diag(1, ω, ω2) [71–75] where ω =
e2π i/3 is the third root of unity. The other two common exten-
sions are D(a, b, c) = Diag(±ξ a,±ξ b,±ξ c) [76–78], where
ξ = e2π i/9, and the metaplectic R = Diag(1, 1,−1) [79,80]
gates. While the metaplectic set (C + R)3 is strictly a subset
of (C + T)3 [80], it may prove more practical in hardware and
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thus warrants study. Thus, in this work, we study the synthesis
of SU(3) unitaries using (C + R)3.

The Solovay-Kitaev theorem states that the number of
gates necessary for an approximation of a single gate with
error ε scales as O( logγ ( 1

ε
)) for some γ that depends on

the set and algorithm employed. The only previously known
deterministic algorithm known for qutrits is the Solovay–
Kitaev algorithm with γ ≈ 1.44 + δ for some small positive
δ [81,82]. Our work improves this situation by producing an
algorithm for approximation plus an exact synthesis frame-
work for qutrits by generalizing the modern qubit synthesis
approaches based on number theory [79], which guarantees
γ = 1 when constructed over algebraic integers. Beyond γ ,
we determine the actual prefactor of log(1/ε) for (C + R)3,
enabling fault-tolerant resource estimates.

This work is organized as follows: We briefly review qutrit-
based computation and ring-based gate synthesis in Sec. II.
This leads into Secs. III and IV, where two algorithms are
constructed for approximating diagonal single-qutrit gates:
the exhaustive search and the Householder search. This is
followed by a method for determining the (C + R)3 word for
the approximation in Sec. V. Numerical studies are found in
Sec. VI and comparisons between qubit and qutrit compilation
are found in Sec. VII. We then conclude in Sec. VIII.

II. THEORETICAL BACKGROUND

Qutrit systems have a basis of three-level states |0〉, |1〉,
and |2〉; their Hilbert spaces scale as 3N which is a polynomial
increase compared with the qubits’ 2N . A universal—though
not fault-tolerant—gate set for qutrits can be built from single-
qutrit rotations and an entangling gate. One such set is the 18
two-level Givens rotations,

Rα
(b,c)(θ ) = e−iθ/2σα

(b,c) , (1)

where σα
(b,c) is the Pauli matrix σα = {X,Y, Z} acting on the

|b〉 − |c〉 subspace, combined with the CSUM gate:

CSUM|i〉| j〉 = |i〉|i ⊕3 j〉. (2)

While CSUM is part of qutrit Clifford group, Rα
(b,c)(θ ) are

not. Therefore, if one wants to implement the Rα
(b,c)(θ ) rota-

tions using a fault-tolerant gate set, one has to approximately
synthesize these rotations using a finite set of gates such
as (C + R)3. This approximation is possible due to, i.e.,
the Solovay-Kitaev theorem [81]—any d-dimensional qudit
gate U ∈ SU(d ) can be approximated by a gate V ∈ G, with
||U − V || � ε and NG scaling as O( loga

d (1/ε)).
Optimal algorithms correspond to the case where the ex-

ponent overhead a = 1 [83,84]. Furthermore, by considering
the geometric structure of hyperspheres covering SU(d ), one
can show that there always exists a unitary U ∈ SU(d ) whose
ε-approximation V requires at least [74,85]

NG �
ln (A) + (d2 − 1) ln

(
1
ε

)
ln (d (d − 1))

, (3)

where

A =
√

2d−1d[d (d − 1) − 1] �
(

d2−1
2

)
d4π3/2(d−1)G(d + 1)

, (4)

and G(n) = ∏d−1
k=1 k! is the Barnes G function. For the case of

qubits (d = 2), Eq. (3) predicts

NG = 3 log2 (1/ε) − 5.65

= 9.97 log10 (1/ε) − 5.65. (5)

For qutrits (d = 3), we find

NG = 4.9 log3 (1/ε) − 2.16

= 10.27 log10 (1/ε) − 2.16. (6)

The described properties are independent of a specific G,
meaning that specific instances may exhibit different perfor-
mance. We focus here on G = (C + R)3 which is generated
by the qutrit Hadamard H , phase gate S, and R, following the
notation of Ref. [76]:

H = 1

i
√

3

⎛
⎝1 1 1

1 ω ω2

1 ω2 ω

⎞
⎠,

S = Diag (1, ω, 1), R = Diag (1, 1,−1). (7)

Other gates in C3 that will prove useful include:

X =
⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠, D(a, b, c) = Diag(ωa, ωb, ωc), (8)

where a, b, c ∈ {0, 1, 2}. The decomposition of D(a, b, c) into
H, S can be aided by the relations:

H† = H3, X(0,1) = HS2H2SH†,

X(1,2) = H2, and X = H†SH2S2H†, (9)

where X(i, j) acts as a transposition gate in the (i, j) subspace
of the qutrit Hilbert space. As an example,

D(1, 2, 1) = X(0,1)SXSX(1,2)S
2. (10)

Determining efficient synthesis is an ongoing area of re-
search, even for qubits. The best algorithms rely upon insight
from number theory. One can show that any V ∈ G consists
of matrix entries in a ring R. This was proven and then used
to perform exact single-qubit synthesis in (C + T)2 [86]. The
extension to approximate synthesis requires determining a V
that is within distance ε of the desired gate.

Identifying these approximations requires solving a Dio-
phantine equation. In general, this is NP-complete [87] and
thus finding the shortest word is often difficult. Luckily, this
need not prevent subclasses of gates from being approximated
efficiently. In particular, a probabilistic number-theoretic
method to approximate diagonal single-qubit gates was first
introduced in Ref. [88]. Since any single-qubit gate can be
exactly represented by three diagonal gates and C2, it was
demonstrated that U ∈ SU(2) could be approximated with
NG = 3 logp(1/ε3) with a gate set associated with a prime p.
For (C + T)2 one finds p = 2 while other “golden gate sets”
can be used to reduce this bound up to 7

3 log59(1/ε3) [65].
Further improvements have been made for (C + T)2, with
the state-of-the-art being the repeat-until-success method of
Ref. [89]. Ultimately, finding ways to decompose and approxi-
mate arbitrary gates more efficiently than by diagonal matrices
remains an open problem.
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Similarly, (C + R)3 can be related to a localized ring.1

Starting from the ring of Eisenstein integers, R3 = {a0 +
a1ω | ai ∈ Z, ω = e

2π i
3 }, one localizes it to obtain the ring

R3,χ = { a
χ f | a ∈ R3, f ∈ N0} where χ = 1 + 2ω = √−3.

Inspecting the generators [Eq. (7)], one sees that all their en-
tries are in R3,χ . Therefore, the set generated by the (C + R)3

is the unitary group over the R3,χ ring, denoted by U (3,R3,χ )
[76,90]. Thus, any matrix V ∈ (C + R)3 has the form

V = 1

χ f

⎛
⎝x1 y1 z1

x2 y2 z2

x3 y3 z3

⎞
⎠, (11)

where xi, yi, zi ∈ R3, and f ∈ N0. An important consequence
of this observation is that synthesis over this gate set can
be performed with optimal scaling of the number of gates,
O( log3(1/ε)). The remaining challenge lies in developing
a constructive algorithm that reaches this complexity while
minimizing constant factors. Such an algorithm can be de-
composed into two steps. First, find a sufficient approximation
V ∈ U (3,R3,χ ). Then, determine the (C + R)3 word that ex-
actly synthesizes V .

Any single-qutrit unitary is a product of a global phase and
an SU(3) matrix. Noting that a global phase may be synthe-
sized by a modification of our algorithm, we focus only on
SU(3) matrices which can be synthesized using C3 rotations
from

RZ
(0,1)(θ ) = Diag(e−iθ/2, eiθ/2, 1). (12)

Thus, the goal is to find V ∈ U (3,R3,χ ) such that∣∣∣∣RZ
(0,1)(θ ) − V

∣∣∣∣ � ε, (13)

given a choice of θ and an error ε > 0. We use the Frobe-
nius norm2 throughout this work. Furthermore, anticipating
the high cost of implementing non-Clifford gates, we use
the number of R gates, NR, as the quantum complexity
of the synthesis problem.

To solve Eq. (13), we present two algorithms. The first al-
gorithm conducts an exhaustive search over (C + R)3 group,
yielding good results but incurring significant classical run-
time. The second algorithm restricts its search to Householder
reflection gates, improving classical complexity while requir-
ing an increased NR. The following sections provide detailed
explanations of both algorithms.

Before describing both algorithms, it is helpful to consider
the geometry of the Eisenstein integers within the real plane
R2. Any complex number z (e.g., eiθ/2) can be represented as
a vector in R2 via the mapping

z �→
(

Re (z)
Im (z)

)
. (14)

In particular, any Eisenstein integer, x1 + x2ω ∈ R3, maps to
the real vector

y =
(

x1 − x2
2

x2
√

3
2

)
∈ R2. (15)

1A localization of a ring R may be thought of as a method to
introduce fractions.

2The Frobenius norm is ‖A‖2
F = tr(A†A) = ∑

i, j |Ai j |2.

As a result, the Eisenstein integers form an integer lattice
L1 ⊂ R2 generated by

B1 =
(

1 − 1
2

0
√

3
2

)
, (16)

i.e.,

L1 = {y = B1 x | x ∈ Z2}. (17)

III. EXHAUSTIVE SEARCH ALGORITHM

A. Overview

To find a gate V that satisfies Eq. (13), it behooves us to
expand the Frobenius norm:

∣∣∣∣RZ
(0,1)(θ ) − V

∣∣∣∣2 =
∑

j

(∑
i

∣∣RZ
(0,1)(θ )i j − Vi j

∣∣2

)

=
∑

j

∣∣∣∣RZ
(0,1)(θ ) j − Vj

∣∣∣∣2
. (18)

From this, we see that the norm can be decomposed into a sum
over column vectors; each contributes ‖RZ

(0,1)(θ )i − Vi‖2. As a
result, approximating RZ

(0,1)(θ ) may be reduced to approximat-
ing each of its column vectors with errors εi (i = 1, 2, 3) such
that

∑
i ε

2
i � ε2.

Consider a target unit vector t( j) = eiαδi j with a single
nonzero entry and α being a real number. To approximate it
using a unit vector v imposes a condition on only one entry
of v:

‖t( j) − v‖2 =
∑

i

|eiαδi j − vi|2

= 2 − 2 Re(v j e−iα ). (19)

Requiring this to be bound by ε2
j , we can apply it to Eq. (18)

to give

Re

(
x1

χ f
ei θ

2

)
� η(ε1), Re

(
y2

χ f
e−i θ

2

)
� η(ε2),

Re

(
z3

χ f

)
� η(ε3), (20)

where η(εi ) := 1 − ε2
i /2.

To derive an algorithm, it is useful to further simplify
Eq. (20). To do so, we note

χ− f = (−3)− f /2 = (−1)� f /2�3−� f /2�χ f̄ , (21)

where f̄ := f mod 2. By introducing the change of variables

x′
1 = (−1)� f /2�χ f̄ x1 (22)

and applying similar transformations for y2 and z3, Eq. (20)
can be rewritten as

Re(x′
1eiθ/2) � 3� f /2�η(ε1),

Re(y′
2e−iθ/2) � 3� f /2�η(ε2),

Re(z′
3) � 3� f /2�η(ε3). (23)
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FIG. 1. Search regions for (left) exhaustive earch algorithm.
The search regions of Eq. (23) are as follows: the blue corre-
sponds to x′

1, the green region corresponds to y′
2, and the orange

region corresponds to z′
3. (right) Householder search algorithm: u =

1√
2
(cos θ/2, sin θ/2, −1, 0)T . The yellow region corresponds to the

search region in Eq. (50).

Moreover, the unitarity of V imposes the bounds

|x′
1|2, |y′

2|2, |z′
3|2 � 32� f /2�. (24)

The constraints of Eqs. 23 and 24 have straightforward ge-
ometric interpretations. That is, the Eisenstein integers x′

1,
y′

2, and z′
3 are lattice points in the respective shaded regions

depicted in the left panel of Fig. 1.
Now, it is clear that the synthesis problem can be divided

into two parts. The first part is to enumerate candidates’ diag-
onal entries x1, y2, and z3 satisfying Eqs. (20).

B. Enumeration of possible diagonal entries

This problem may be simply formulated as finding all the
elements of a set

D(θ, f , ε) := {x ∈ R3 | Re(x/χ f ) � η(ε)and|x/χ f | � 1}.
(25)

where f ∈ N and η(ε) := 1 − ε2/2. With this notation, for a
fixed f , the diagonal entries x1, y2, and z3 satisfy

x1 ∈ D(θ, f , ε1), y2 ∈ D(−θ, f , ε2) and z3 ∈ D(0, f , ε3).
(26)

In fact, to satisfy ε2
1 + ε2

2 + ε2
3 � ε2, we may set ε1 = ε2 =

ε3 = ε and exclude the triplets (x1, y2, z3) for which Eq. (13)
does not hold. Moreover, it is evident that

D(−θ, f , ε) = D∗(θ, f , ε), (27)

i.e., the set D(−θ, f , ε) can be obtained by taking the complex
conjugates of elements of D(θ, f , ε). Therefore, to obtain
candidates’ diagonal entries x1, y2, and z3 for a fixed f , it
suffices to enumerate the sets D(θ, f , ε) and D(0, f , ε). The
enumeration algorithm is shown in Algorithm 1 and the full
derivation is shown in Appendix A.

C. Unitary matrix completion

For a particular triplet (x1, y2, z3)/χ f for which Eq. (13)
holds, the next step is to complete the unitary matrix, find
the off-diagonal entries. To do so, we first check if the triplet
satisfies the necessary and sufficient condition for a set of

ALGORITHM 1. Enumerate candidates (θ, f , ε).

complex numbers to serve as the diagonal entries of a unitary
matrix [91]. For (C + R)3 gates, these conditions are

|x1| + |y2| − |z3| �
√

3
f
, |x1| + |z3| − |y2| �

√
3

f
,

|y2| + |z3| − |x1| �
√

3
f
. (28)

For the triplets satisfying the conditions above, we proceed to
finding the off-diagonal entries. In fact, the unitary matrix is
determined (if one exists) once the lower triangular entries are
found, see, i.e., Ref. [92]. Consequently, we search for entries
x2, x3, and y3.

We start by obtaining the entries x2 and x3. From unitarity,
these entries satisfy

|x1|2 + |x2|2 + |x3|2 = 3 f . (29)

Hence, they can be enumerated using an exhaustive search
algorithm. That is, for every integer 0 � N � 3 f − |x1|2, one
uses Appendix C to find all solutions to the equation |x1|2 =
N . If there exist such solutions, then one similarly proceeds to
solving the equation |x3|2 = 3 f − |x1|2 − N .

Having obtained x2 and x3 from the discussion above, it
remains to find candidates for y3 to obtain the lower triangular
matrix. Given that we have x3 and y2, the unitarity condition
imposes

|y3|2 � min(3 f − |x3|2, 3 f − |y2|2) (30)

because both the rows and columns of a unitary matrix have
unit norms. Then, we use the same enumeration method as in
the case of x2 to search for y3 candidates.
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Finally, once the lower triangular entries are specified,
determining the upper triangular entries is straightforward.
This can be done simply by determining whether there exist
Eisenstein integers y1, z1, and z2 consistent with unitarity.
Equation (31) is a necessary condition (not sufficient) for the
existence of y1 and z1 consistent with unitarity:

x∗
1 |(x∗

2y2 + x∗
3y3) and z∗

3|(x2x∗
3 + y2y∗

3 ), (31)

where for two Eisenstein integers a and b, a|b means there ex-
ists another Eisenstein integer c such that b = ac. Determining
if a|b can be simply done by performing long division of b by
a and a|b is true if the remainder of the division is zero.

If the conditions in Eq. (31) hold, then the only candidates
for y1 and z2 are given by

y1 = −x∗
2y2 + x∗

3y3

x∗
1

and z2 = −x2x∗
3 + y2y∗

3

z∗
3

. (32)

The last entry z1 may be determined in several ways. A nec-
essary condition for its existence consistent with unitarity is

x∗
1 |(x∗

2z2 + x∗
3z3). (33)

If this condition is satisfied, the only possible value is

z1 = −x∗
2y2 + x∗

3z3

x∗
1

. (34)

With all the possible entries determined, it only remains
to check VV † = V †V = 1, thus completing the algorithm.
Algorithm 2 summarizes the CompleteUnitary subroutine
and Algorithm 3 shows the full exhaustive search algorithm.

D. Time complexity

The time complexity can be split into two steps. Step (1)
involves using Algorithm 1 to enumerate all valid triplets
(x1, y2, z3). The complexity of the enumeration algorithm (Al-
gorithm 1) is determined by the area of each search region in
Fig. 1. One can show that these areas are

32� f /2�ε2

(
1 − ε2

4

)
arccos

(
1 − ε2

2

)
. (35)

Expanding arccos (1 − ε2/2) = ε + O(ε3), we observe that
this area scales as O(3 f ε3). Consequently, the total complex-
ity of enumeration is O(33 f ε9).

Step (2) of the algorithm is to complete the unitary (Al-
gorithm 2). The complexity is dominated by solving Eq. (29)
iteratively for |x|2 = N where N = O(3 f ε2). Which, in Ap-
pendix C, we showed leads to a complexity of O(3 f /2ε).

Combining the complexity of both parts, we obtain
O(37 f /2ε10) for a fixed f . The algorithm terminates at fmax

once a solution is found. Recalling that we expect scaling
fmax = c1 log 1

ε
, the overall complexity is

fmax∑
f =0

3
7 f
2 ε10 = O

(
3

7
2 fmaxε10

) = O
(
ε10− 7

2 c1
)
. (36)

Finally, it is possible to derive a rough lower bound on
c1 by estimating the number of Eisenstein integers in each

ALGORITHM 2. CompleteUnitary(x1, y2, z3, f ).

search region as follows: For a lattice L with basis B =
(b1, b2, . . ., bm), the fundamental domain is

F (L) =
{∑

i

ci bi

∣∣∣∣∣ ci ∈ R and ci ∈ [0, 1)

}
. (37)

From Ref. [93], L is a uniform tiling of the ambient space
with its fundamental domain. As a result, the volume of this
domain is

vol(F (L)) =
√

det (BT B), (38)

represents the inverse density of the lattice points. Therefore,
the number of lattice points within a region, K, of volume
vol(K) can be approximated by the ratio vol(K)/vol(F (L)).

For us, each search region has a vol(K) = O(3 f ε3), and for
L1, we find vol(F (L1)) = √

3/2. Requiring that at least one
lattice point exists per volume then corresponds to

1 � vol(K)

vol(F (L))
= 3 f ε3

√
3/2

= 2 × 3c1 log3
1
ε
− 1

2 ε3. (39)

Reducing this inequality yields c1 � 3 and, consequently,
NR � 3 log3

1
ε

+ C where C is a constant.

IV. HOUSEHOLDER REFLECTION SEARCH

The poor scaling of the time complexity with ε of Al-
gorithm 3 motivates us to search for more efficient ways to
approximate diagonal gates. It was argued in Ref. [90] that by
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ALGORITHM 3. Exhaustive search.

restricting to Householder reflection of the form

Ru = 1 − 2uu†, (40)

where u is a unit vector, there exists a probabilistic classi-
cal algorithm returning an approximation with average NR ∼
8 log3

1
ε

using an average classical complexity O(log 1
ε

). Fur-
ther work in Ref. [79] reduced these estimates under certain
number-theoretic conjectures to NR ∼ 5 log3

1
ε

for “nonex-
ceptional” target two-level unit vectors. We present in these
works an explicit algorithm and demonstrate its scaling for
Householder reflections in the (C + R)3 group.

A. Overview

Reference [90] reformulated the approximation problem to
only require approximating a unit vector u = (u1, u2, u3) with
another unit vector v = 1

χ f (v1, v2, v3)T such that the entries
vi ∈ R3 and f ∈ N0.3 We refer to such a unit vector as a unit
Eisenstein vector. It is straightforward to verify that a RZ

(0,1)(θ )
matrix, up to a permutation, corresponds to a Householder
reflection, i.e., RZ

(0,1)(θ ) = X(0,1)Ru for some

u = 1√
2

(eiθ/2,−1, 0)T . (41)

We can derive an upper bound between two Householder
reflections Ru and Rv. To start, the norm between two House-
holder reflections can be related to their associated unit
vectors

‖Ru − Rv‖2 = 8(1 − |u†v|2). (42)

3This problem is related to the intrinsic Diophantine approximation
[94].

Furthermore, for any two vectors u and v

‖u − v‖2 = 2[1 − Re(u†v)]. (43)

Since, for any complex number z, the following inequality is
true (Re[z])2 � |z|2, combining with the previous expressions
yields

‖Ru − Rv‖ � 2
√

2 ‖u − v‖ δ(u, v), (44)

where

δ(u, v) :=
√

1 − ‖u − v‖2

4
� 1. (45)

Using δ(u, v) � 1 reproduces the bounds of Ref. [95], which
demonstrates to approximate Ru within ε, it suffices to identify
a v such that

||u − v|| � ε/(2
√

2). (46)

However, given δ(u, v) � 1 in Eq. (44) means that the require-
ment ‖u − v‖ � ε/(2

√
2) may exclude some Rv that meet

the desired accuracy. To address this, we introduce into our
algorithm a contraction factor 0 < c � 1 and adjust the toler-
ance to ε/(2

√
2 c). While c < 1 no longer guarantees that all

reflections remain within ε, those exceeding this threshold can
be checked and rejected. This approach reduces NR without
increasing the algorithmic complexity, but the enlarged search
space will lead in practice to longer run times.

From Eq. (41), we see that u3 = 0. Thus, approximating u
by v = √−3

− f
(v1, v2, v3)T imposes the condition

Re(u∗
1v

′
1 + u∗

2v
′
2) � r1, (47)

where we have rewritten terms using Eqs. (22) and (A1).
Additionally, since v is a unit vector, it follows that

|v′
1| + |v′

2|2 � r2
2 . (48)

B. Geometric interpretation

These constraints on v′
1 and v′

2 have a straightforward for-
mulation and geometric interpretation in R4. Any two-level
complex vector u ∈ C3 (with u3 = 0 in our case) can be
mapped to R4 by the isomorphism u = (u1, u2, 0)T �→ u =
( Re(u1), Im(u1), Re(u2), Im(u2))T . By a slight abuse of no-
tation, we refer to both the two-level complex and its image
in R4 using the same letter. When the context does not make
it obvious which version is being discussed, we clarify it
explicitly.

In addition, consider for now the complex vector
(v1, v2)T ∈ C2 where v1, v2 ∈ R3. By defining these Eisen-
stein integers as v1 = x1 + x2ω and v2 = x3 + x4ω where xi ∈
Z, we can represent the complex vector (v1, v2)T in R4 by a
vector y = (x1 − x2

2 ,
√

3
2 x2, x3 − x4

2 ,
√

3
2 x4)T . Consequently, it

can be seen that the set of all such vectors y forms an integer
lattice L2 in R4, defined by

L2 = {y = B2 x|x ∈ Z4}, (49)

where B2 = B1 ⊕ B1 and B1 are defined in Eq. (16). The
Eisenstein integers v1 and v2 can be recovered from y via
x = B−1

2 y.
To finally formulate the conditions in Eqs. (47) and (48) as

vector constraints in R4, we denote the image of (v′
1, v

′
2)T by a
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lattice vector y′ ∈ L2. Then, these constraints can be rewritten
as lattice points y′ such that

uT y′ � r1 and y′T y′ � r2
2 . (50)

In other words, we are looking for lattice points y′ above a
hyperplane and inside a hypersphere of radius r2, as demon-
strated in Fig. 1. Denoting the volume between the hyperplane
(uT y′ = r1) and the hypersphere by D(u, f , ε), we have y′ ∈
L2 ∩ D(u, f , ε).

Once such an Eisenstein vector v = χ− f (v1, v2, v3)T is
found, the matrix V = X(0,1)Rv is the desired approximation
of RZ

(0,1)(θ ). It can be shown that synthesizing V requires
NR � 2 f [76], and we provide a deterministic search algo-
rithm focused on minimizing f .

Approximating V can thus be done in two iterated steps.
Step (1). Setting ε′ = ε/(2

√
2c), for a fixed f ∈ N0 and

a unit vector u ∈ R4, we enumerate all candidates y′ ∈ L2 ∩
D(u, f , ε′) following the algorithm in Appendix B.

Step (2). For each y′, we extract v1 and v2, and solve
the norm equation |v3|2 = 3 f − |v1|2 − |v2|2, as discussed in
Appendix C.

If a solution is found, we construct the vector v and sub-
sequently the matrix V = X(0,1)Rv. It only remains to test that
V approximates the target RZ

(0,1)(θ ) to the desired accuracy.
Therefore, if ‖RZ

(0,1)(θ ) − V ‖ � ε, the matrix V is returned. In
the event that all candidates y′ are exhausted and no solution
is found, we increment f and repeat the procedure. The details
are summarized in Algorithm 4.

We now discuss the complexity of this algorithm. In Step
(1), we enumerate all y′ in the region bound by Eq. (50). For
a fixed f , the complexity of this corresponds to the volume
of the region. Due to spherical symmetry, this volume corre-

ALGORITHM 4. Householder reflection search.

sponds to that of a hyperspherical cap in R4 defined by the
constraints y4 � r1 and yT y � r2

2 . According to Ref. [96], this
volume is given by

vol (D(u, f , ε)) = π3/2

�(5/2)
r4

2

∫ φ

0
sin4 θ dθ, (51)

where φ = arccos(r1/r2) = arccos(1 − ε2/2). Evaluating this
integral yields:

vol (D(u, f , ε)) = πr4
2

24
[12φ − 8 sin (2φ) + sin (4φ)]

= 4π

15
r4

2ε
5 + O

(
r4

2ε
7
)
, (52)

where we expanded in the ε → 0 limit. Using the definition of
r2 in Eq. (A1) gives us a final scaling for Step (1) of O(32 f ε5).

The problem in Step (2) is to solve the norm equa-
tion in Eq. (48) using the exhaustive search method in
Appendix C, which has complexity O(|v3|). We show in
Appendix D that |v3| = O(3 f /2ε). Combining these two
steps, the complexity of the Householder search method is
O(35 f /2ε6). Similarly to the exhaustive algorithm, this one
terminates at fmax. Assuming the scaling fmax = c2 log 1

ε
, the

overall
fmax∑
f =0

3
5
2 f ε6 = O

(
3

5
2 fmaxε6

) = O
(
ε6− 5

2 c2
)
. (53)

Similarly, it is also possible to place a rough lower bound
on c2. The volume of the search region in Fig. 1 (right)
is O(32 f ε5). Using the arguments at the end of Sec. III,
we obtain c2 � 2.5. This lower bound corresponds to NR �
5 log3

1
ε

+ C where C is a constant.

V. EXACT SYNTHESIS

Given the approximation gate V ∈ U (3,R3,χ ), what re-
mains is to determine the word in (C + T)3 which produces
it. To do this, one uses the fact that any V can be written
optimally in a normal form [76]:

V =
f∏
i

HD(a0,i, a1,i, a2,i )Rεi X δi , (54)

where a0,i, a1,i, a2,i, δi ∈ {0, 1, 2}, and εi ∈ {0, 1}. While this
form is more complicated than the analogous normal form
for qubits [97] that contain only H, T, S, there is still only
one non-Clifford gate, R, since D(a, b, c) and X can be con-
structed from H, S as shown above. Taken together, the total
number of possible normal forms NN smaller than f is

NN =
f∑

i=0

(3422)i = 324 f +1 − 1

323
. (55)

To determine the correct normal form, and therefore circuit,
we implement the algorithm from Ref. [76], which guarantees
optimality in NR.

To do this, we take advantage of the smallest denom-
inator exponent sde(z) which corresponds to the smallest
non-negative integer f such that zχ f ∈ R3 when z ∈ R3,χ .
It was shown in Ref. [76] that all entries of a matrix in
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ALGORITHM 5. Decomposition of V in U (3,R3,χ ).

U (3,R3,χ ) have the same sde(z). Therefore, an algorithm for
solving Eq. (54) is to iteratively find a set a0,i, a1,i, a2,i, δi, εi

that reduces the sde(z) by 1. Each reduction corresponds to at
most one R gate per iteration. Once sde(z) = 0, the resulting
unitary can then be obtained from a lookup table. The pseu-
docode is detailed in Algorithm 5.

VI. NUMERICAL RESULTS

We now discuss the numerical results for our work
and compare them to existing methods, including Bocharov
et al. [79]. And the asymptotic theoretical upper bounds ex-
pected from these algorithms. We provide the scaling for
the NR compared with the infidelity, ε in Fig. 2. For both
algorithms, we investigated the statistical distribution of NG
for a random sample of up to 104 angles and found that
the cost is strongly peaked and nearly normally distributed.
Therefore, for our numerical results, we restricted ourselves
to 100 random angles between (−π/2, π/2). Using the ex-
haustive algorithm, we evaluated angles at 10 target precisions
ε ∈ {1, 0.5, 0.25, 0.1, . . . , 10−3}. From this, we find on aver-
age

NE
R (ε) = 2.193(11) + 8.621(7)log10(1/ε)

= 2.193(11) + 4.113(3)log3(1/ε). (56)

For the Householder search algorithm, we evaluated angles at
11 target precisions ε ∈ {1, 10−1, . . . , 10−10}. After a modest
search through contraction factors, we found that c = 0.35
yields short word lengths with tolerable additional runtime.
Using this faster algorithm gave

NH
R (ε) = 3.20(13) + 10.77(3)log10(1/ε)

= 3.20(13) + 5.139(14)log3(1/ε). (57)

We can use the average costs [Eqs. (57) and (56)], along with
Eqs. (36) and (53), to compute the average complexity of

FIG. 2. Scaling of the number of non-Clifford gates NG (T or
R depending on qudit dimension) against the infidelity ε. Angles
are uniformly sampled in the region θ ∈ (−π/2, π/2). The work
of Bocharov et al. [79] for qubits is shown with the orange line.
The black data points and solid black line correspond to our qutrit
Householder algorithm and fit. The green squares and solid green
line are our qutrit exhaustive algorithm and fit. The dashed lines
correspond to theoretical asymptotic upper bounds.

both algorithms. For the full (C + R)3 search, the average
c1 corresponds to the slope 4.11, which yields an average
complexity of O(ε−4.4). In the case of the Householder search,
the average c2 is half the slope, 5.139, resulting in an average
complexity of O(ε−0.42).

To determine the average cost for an arbitrary single-qutrit
SU(3) gate, these results should be multiplied by 6 [79]. Given
the importance of the T3 gate in discussions of qutrits, we
investigate its approximate synthesis with the Householder
search algorithm, finding NH

R for T3 aligns with that of the
average gate costs. In passing, we also note that NR exhibits
a weak angular dependence: angles closer to R3,χ lead to
lower NR.

With these results, we can compare our single-qutrit
synthesis method to that of implementing the same uni-
tary on two qubits. For the general case of two-qubit
circuits with cnots and Rα (θ ), i.e., SU(4), 15 single-qubit
rotations are required [98]. Restricting to the single-qutrit
subspace of SU(3), dimensional analysis bounds the cost as
at least 10 Rα (θ ). Using the average cost for synthesizing
RZ (θ ) from [89] of NRUS

T = 9.2 + 3.817 log10(1/ε) = 9.2 +
1.15 log2(1/ε) would estimate that an arbitrary single-qutrit
gate would require at least 10 NRUS

T . Comparing with the costs
in Eqs. (56) and (57) imply that single-qutrit synthesis via
our algorithms for R incurs an overhead factor as ε → 0 of
1.35 and 1.69, respectively. If one instead considers a fiducial
ε = 10−10, these factors reduce to 1.12 and 1.40, respectively.

VII. EXAMPLE APPLICATION

It is important to provide context for how some of
these results compare with application-specific problems. For
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example, a prototypical quantum Hamiltonian in high-energy
physics can be truncated to a three-level system that is map-
pable to qutrits [48,99,100]. In these models, the unitary
evolution of three different types of terms needs to be imple-
mented:

e−itU x
, e−itLz

, and e−itLz⊗Lz
, (58)

where

U x = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠ and Lz =

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠. (59)

One of the authors provided quantum circuits to construct
these operators in Refs. [48,101]. The Lz ⊗ Lz rotation re-
quires eight RZ rotations for qubits to be synthesized, while
only requiring four for qutrits. This leads to a qubit-based cost
of synthesis of

NRUS
T (Lz ⊗ Lz ) = 73.6 + 30.536 log10 (1/ε) (60)

while the qutrit-based implementation, depending on the syn-
thesis algorithm, only requires

NH
R (Lz ⊗ Lz ) = 12.80(52) + 43.08(12) log10 (1/ε) (61)

or

NE
R (Lz ⊗ Lz ) = 8.772(448) + 34.484(28) log10 (1/ε). (62)

Therefore, NG for a qutrit implementation is smaller than
Bocharov et al.’s repeat-until-success method for synthesis
errors of ε > 10−17 for an exhaustive search, and for ε > 10−5

for the Householder algorithm.
Meanwhile, the operator U x can be broken up into 1 RZ

(a,b)
rotations that need to be synthesized. This would be compared
with the 5 qubit RZ rotations. This leads to the qubit imple-
mentation requiring

NRUS
T (U x ) = 46 + 19.09 log10 (1/ε), (63)

while the qutrit ones scale as

NE
R (U x ) =2.193(11) + 8.621(7) log10 (1/ε),

NH
R (U x ) =3.20(13) + 10.77(3) log10 (1/ε). (64)

In this case, both qutrit implementations are strictly superior
to the qubit RUS implementation. Taken together, this sug-
gests that a fault-tolerant implementation of this high-energy
physics model could be performed more efficiently in terms
of non-Clifford gates with qutrits for reasonable ranges of ε.

VIII. CONCLUSION

In this work, we have demonstrated algorithms to synthe-
size diagonal gates for qutrits using the Clifford + R gates.
Our studies show that given a target infidelity ε for a diagonal
rotation gate, one can approximate a diagonal that requires
approximately 3.20(13) + 10.77(3)log10(1/ε) R gates. These
results open up the feasibility of using fault-tolerant qutrits
for quantum simulations. While these results are valuable,
they leave several open questions. First, while the prefactor
10.77(3) for synthesizing diagonal gates is close to the lower
bound of 10.27, multiplying by six to obtain arbitrary gates
leaves us quite far from optimality. Potential improvements

could come from exploring repeat-until-success methods [89]
or identifying broader subclasses of gates that can be ef-
ficiently synthesized. Another direction of research might
investigate synthesis with other groups, such as (C + D)3 or
(C + T)3. Furthermore, similar to qubits, looking for larger
transverse groups than Cliffords could further reduce the cost
[69,70] and potentially enable novel application-specific gate
sets, i.e., high-energy physics [55,102].
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APPENDIX A: ENUMERATION ALGORITHM

From Equations (17) and (16), we find that it is convenient
to work with a half-integer parametrization (p, q). That is,
for an Eisenstein integer x1 + x2ω, we set p = x1 − x2/2 and
q = x2/2. Thus satisfying Eqs. (23) and (24) corresponds to
finding three lattice vectors (p, q

√
3)T each in a different

region. Using α to represent the desired angles and

r1 = 3� f /2�η(εi ), r2 = 3� f /2�, (A1)

the three regions are then defined by

p cos α + q
√

3 sin α � r1 and p2 + 3q2 � r2
2 . (A2)

From the first inequality, it follows that p2 cos2 α �
(r1 − q

√
3 sin α)2. Using the second constraint

and completing the square, it can be verified
that |√3q − r1 sin α| � (r2

2 − r2
1 )1/2 cos α. There-

062414-9



GUSTAFSON, LAMM, LIU, MURAIRI, AND ZHU PHYSICAL REVIEW A 112, 062414 (2025)

fore, the half-integers q are sampled within the
interval

1
2�S−� � q � 1

2�S+�, (A3)

where S± := 2√
3
[r1 sin α ± (r2

2 − r2
1 )1/2 cos α]. For a given q,

the possible values of p satisfy p + q ∈ Z and lie in the inter-
val

1
2�2T−� � p � 1

2�2T+�, (A4)

where T− := max[−(r2
2 − 3q2)1/2,

r1−
√

3q sin α

cos α
] and T+ :=

(r2
2 − 3q2)1/2.

APPENDIX B: ENUMERATION ALGORITHM
FOR y ∈ L2 ∩ D(u, f , ε)

The goal is to enumerate all vectors y ∈ L2 ∩ D(u, f , ε)
for a fixed f � 0. As defined in Eq. (49), the lattice vectors
y ∈ L2 take the form y = B2x, where x ∈ Z4. By matrix mul-
tiplication, y can be written as

y =
(

x1 − x2

2
,

√
3

2
x2, x3 − x4

2
,

√
3

2
x4

)T

. (B1)

It is convenient to parametrize y with half-integers
p1, q1, p2, q2 such that pi := xi − x2i/2 and qi := x2i/2 where
i = 1, 2. Each pair (pi, qi ) must satisfy the integer constraint
xi = pi + qi. Consequently, the lattice vectors take the form
y = (p1,

√
3q1, p2,

√
3q2)T and yT y = ∑2

i=1 p2
i + 3q2

i .
Lemma B1. For y ∈ D(u, f , ε), |y4| � (r2

2 − r2
1 )1/2.

Proof. Let ei (with i = 1, 2, 3, 4) be the canonical basis
vectors of R4. That is, e1 = (1, 0, 0, 0)T . Let �3 be the pro-
jector onto the subspace spanned by e1, e2, and e3. Since u4 =
0, it follows that uT y = uT �3y. By the triangle inequality,
(�3y)T (�3y) � r2

1 . Additionally, using the total norm con-
straint: yT y = (�3y)T (�3y) + y2

4 � r2
2 , implying that y2

4 �
r2

2 − r2
1 or, equivalently, |y4| � (r2

2 − r2
1 )1/2. �

This lemma constrains the sampling range for q2:

1

2

⎡
⎢⎢⎢−2

√
r2

2 − r2
1

3

⎤
⎥⎥⎥ � q2 � 1

2

⎢⎢⎢⎣2

√
r2

2 − r2
1

3

⎥⎥⎥⎦. (B2)

For each q2, the other components satisfy:

q1 cos (α) +
√

3q1 sin (α) �
√

2r1 + p2,

q2
1 + 3q2

1 � r2
2 − 3q2

2 − p2
2, (B3)

where α := θ/2. Since (cos α, sin α)T is a unit vector, apply-
ing the arguments in Lemma B 1 gives

|
√

2r1 + p2| �
√

r2
2 − 3q2

2 − p2
2. (B4)

This inequality holds only for p2 within the interval:

1
2�2 p2,min� � p2 � 1

2�2 p2,max�, (B5)

where p2,(max,min) := 1√
2
[−r1 ± (r2

2 − r2
1 − 3q2

2 )1/2]. Note
that ensuring that the radicand is non-negative provides an
elementary proof of Lemma B 1. With p2 and q2 determined,

Eq. (B3) can be rewritten as

p1 cos (α) +
√

3q1 sin (α) � λ1, p2
1 + 3q2

1 � λ2
2, (B6)

with λ1 := √
2r1 + p2 and λ2

2 := r2
2 − 3q2

2 − p2
2. Enumerating

such p1 and q1 can be done using the results in Eqs. (A3) and
(A4).

APPENDIX C: SOLVING THE NORM EQUATION

This Appendix describes how to solve the norm equation.
Specifically, given a positive integer N , the problem is to find
an Eisenstein integer x = a + bω such that |x|2 = N . Using
the half-integer representation, p = a − b

2 , q = b
2 , the norm

equation can be rearranged to

p2 + 3q2 − N = 0. (C1)

Interpreting this as a quadratic equation in p, the discriminant
is given by � = 4N − 12q2. Real solutions for p exist if � �
0, which requires q2 � N/3. Hence, valid values of q are half-
integers satisfying |q| � �√N/3�.

Since the equation is symmetric under q → −q, it suffices
to consider only non-negative values of q. For each q, if
p = ±(N − 3q2)1/2 such that p + q ∈ Z, then a valid solution
exists. Together, this gives an x = (p + q) + (2q)ω which sat-
isfies the norm equation. Finally, the complexity of this search
is O(

√
N ).

It is important to note that because the norm of Eisenstein
integers is multiplicative:∣∣∣∣∣

∏
i

xi

∣∣∣∣∣
2

=
∏

i

|xi|2 for xi ∈ R3. (C2)

The norm equation |x|2 = N for ∈ R3 can be solved with
a factoring algorithm. Given an integer factorization N =∏

i pci
i , there is a method to solve |x|2 = N which relies on the

relation between rational primes and Eisenstein primes, see,
e.g., Ref. [103]. Indeed, a rational prime p �= 3 either remains
prime in R3 or splits in R3. That is, if p ∈ Z is prime, then
p is also prime in R3 if p ≡ 2 (mod 3). On the other hand, if
p ≡ 1 (mod 3), there exists η ∈ R3 such that |η|2 = p. In the
case p = 3, |1 − ω|2 = 3.

Then, having the factorization for N , solving |x|2 = N re-
duces to solving each |xi|2 = pi for the case pi ≡ 1 (mod 3).4

This can be solved using the method described earlier with
complexity only O(

√
pi ). However, integer factorization using

a general number field sieve (GNFS) algorithm [104] would
reduce the complexity.

APPENDIX D: BOUND ON |v3|
As shown in Appendix C, the complexity of finding v3 via

exhaustive search depends on |v3|. This section establishes an
upper bound on this value. For all y′ ∈ L2 ∩ D(u, f , ε), the
triangle inequality implies |uT y′| � |y′|, which can be used to
show y′T y′ � r2

1 .

4For pi = 3, xi = 1 − ω. For pi ≡ 2 mod 3, xi = pci/2
i if and only if

ci is even because such pi is prime in R3.
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For Eisenstein y′, it follows that y′T y′ = |v′1|2 + |v′2|2 �
r2

2 . Applying the variable change of Eq. (22), we obtain

|v1|2 + |v2|2 � 3− f̄ r2
1 . (D1)

Remembering that |v3|2 = 3 f − (|v1|2 + |v2|2), this equa-
tion simplifies by noting that 32� f /2�− f̄ = 3 f to yield

|v3| � 3 f /2ε
√

1 − ε2/4 = O(3 f /2ε). (D2)
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