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METHODS

The high-level idea is to approximate the partition
function over a continuous gauge group G by an ef-
fective one over the discrete subgroup H of G. We
showed two schemes for digitizing the SU (N ) gauge
group of an effective action to any arbitrary order.

Groups Space Decimation. In this way the partition

INTRODUCTION

e The field of HEP relies on lattice QCD for precision
calculations.

function integrating over G can be written, without
approximation, as a summation over H and integra-
tion over fluctuations:
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o Impta result are extracted from lattc'D. Un-
fortunately, there is restriction of problems that can be
solved classically because BPP C BQP [1].

neutron

e Quantum computers can simulate the time evolu-
tion, but the exact resource required is unknown. A
current resource estimation [2] suggests a loose upper
bound O(10*) of T gates.

e We are looking into digitization schemes for Hamilto-
nians such that quantum resources can be saved im-
mensely.

Character Expansion. The general idea is to approx-
imate the partition function, which can be written as
a series expansion over infinitely many SU (3) charac-
ters, by an effective one over a finite number of S1080
group characters,

e_S[U] — Z B(A,M)X(A,u)(U)v U € SU(S)
(A1)

CLASSICAL LATTICE OQCD

For the defined Wilson action, each expansion coeftfi-
cient 5y, are calculable as an infinite sum in terms
of Bessel functions. Thus we could obtain an effective
partition function over S1080 by matching the follow-
Ing ansatz

e~ Slul — Z&X;(U)a u € 51080

o Discretize the 4-dimensional space time into 4-
dimensional Euclidean lattice.

o Classical lattice allows nonperturbative study of
truncated Hamiltonian before quantum computers
become available.

to the previous equation hence determining the etfec-
tive action S to the target accuracy.
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RESULTS

The following plots show the average energy per plaquette, (Ey) = 1 — R(Tr U,)/3, vs 31 on 4* lattice for S1080
action with corrections. The black line is the SU (3) result.
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Figure 1: By group space decimation.

Figure 2: By character expansion.

DISCUSSION

e Both schemes faithfully produce the physical results
below the freezing points.

FREEZING POINT PREDICTION

(1 — Vi,)7" is exceptionally good at predicting f3;
across gauge groups.

e Both schemes can be generalized to arbitrary
higher-order for required accuracy.

e The group space decimation has predictive power
determining the freezing point.

e The equivalent Hamiltonian from these schemes re-
quires fewer qubits for each trottfer step simulation.
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ONGOING RESEARCH

Another important step in studying the feasibility of these procedures is to explicitly construct the quantum
registers and primitive gates that operate over smaller discrete groups [3].
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