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Query complexity
Let f:{-1,1}" — {—1,1} be a Boolean function.
Goal: for any given input x € {—1,1}", compute f(x) by reading
as few bits as possible from x.
Equivalently, compute f(x) using an algorithm that invokes the
following oracle the least number of times:

i—»Ox—~xi

e f is known to the algorithm.
e input x is not known to the algorithm.
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Quantum query complexity

In the quantum setting we have the following quantum oracle:

li)|p) — Ox —— )b - x;)

Quantum query complexity Q(f)

Minimum number of quantum oracle O, in a quantum circuit
that for every input x, outputs f(x) with error < 1/3.

A

10) = —
8- 0,° Uy = 0, = 2 0,~ Uy
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Why query complexity

e Algorithmic Motivation.

e Most quantum algorithms are naturally phrased as query
algorithms. E.g., Shor, Grover, Hidden Subgroup, Linear
systems (HHL), etc.

e Algorithms often transfer to the circuit model, while the
query complexity abstraction gets rid of unnecessary details.

e Complexity Motivation.

e We can prove statements about the power of different
computational models!

e E.g., exponential separation between classical and quantum
algorithms.
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The k-distinctness problem

DIST}, »

Given N numbers in range of size R, does any number appear
> k times?

e For k = 2 it becomes Element Distinctness problem, which is
an important function with a long history throughout TCS and
is well-understood.

e For k > 2, quantum query complexity of k-distinctness
remains open.

e |t has connections to finding multi-collisions in hash functions,
which is highly relevant to cryptography.

e [ is constant throughout the talk unless explicitly stated
otherwise.
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Historical results of k-distinctness

e For k = 2, Element Distinctness (ED) had been shown to
satisfy Q(ED) = ©(N3) [AS04, Amb07].
e For k > 2
e Upper bound:
e Q(DIST} g) = O(N=
e Q(DIST} z) = O(N
e Lower bound:

L

1), quantum walks [Amb07].

k+
3
2

e —4), learning graphs [Bel12].

o Q(DISTY, z) = Q(Q(ED)) = Q(N3) [AS04].
o Q(DISTY, z) = Q(Ni~z), polynomial method [BKT18].

o Q(DISTY g) = Q(N ~ax), our result, polynomial method.
e Our lower bound result shows for the first time that for

4-distinctness is strictly harder than Element Distinctness.
e Our lower bound result also applies to more general

approximate degree. '
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Approximate degree

e-approximation

A polynomial p : R” — R e-approximates a Boolean function
f:{-1,1}" = {-1,1}if
lp(x) — f(x)] <e V¥xe{-11}"
o cTevge(f) = minimum degree needed to e-approximate f.
o deg(f) := &%1/3(1‘) is the approximate degree of f.

The connection between approximate degree and quantum query
complexity is due to the seminal result [BBC+01]:

a(f) > Hdeg(),

STl = 3_1
o We show that deg(DIST}, ) > Q(Ni~i), for constant k.
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Summary of results

Lower bound result

For any constant k > 2, the approximate degree and quantum
query complexity of the k-distinctness function with domain size
= 1

N and range size R > N is Q(N3 ).

Upper bound result

For any k < ponIog(N) the approximate degree of
k-distinctness is O(N#).
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Approximate degree upper bound

For any k < ponIog(N) the approximate degree of
k-distinctness is O(N#).

e The previous best result [Bell2]

Q(DISTY 1) = exp(O(k)) - O(N?~F77=3).

e This becomes linear for k > Q(log(N)).

e The approximate degree upper bound result does not imply a
quantum query complexity upper bound, but it implies that
polynomial method cannot yield a better than N3 lower bound
for Q(DIST} g).

e An upper bound on the quantum query complexity of

(log n)-distinctness would imply an upper bound for

min-entropy estimation [LW19].
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Lower bound techniques
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Approximate degree lower bound technique

What is best error achievable by any degree d approximation of
f?
Primal LP (Linear in € and coefficients of p):

min, €
st |p(x) —f(x)| <e for all x € {—1,1}"
degp < d
Dual LP:
maxy, Z P(x)f(x)

xe{-1,1}n

s.t. Z l(x)| =1
xe{-1,1}"

> ¥(x)g(x)=0 whenever degqg < d

xe{-1,1}"
11 /
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Dual Characterization of Approximate Degree
Fact: deg, (f) > d iff there exists a function ¢: {—1,1}" — R

with

(1) Z Y(x)f(x) > € “high correlation with f"
xe{—-1,1}"

(2) Z [Y(x)] =1 “L{-norm 1"
xe{-1,1}n

(3) Z ¥(x)g(x) =0, when degg < d “phd(y)) > d”
xe{—-1,1}"

Such a 9 is called a dual polynomial.
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Connection between DIST;‘V’R and composed functions

Theorem [BKT18]

Let N,R € Nand 2 < k < N be any integer. Then for any ¢ > 0,

deg, (DISTE o ) — O (é - deg,(OR 0 THRkN)s~> |

e < N denotes the the domain is restricted to inputs of
Hamming weight less than N.

e ORy:{-1,1}" = {—1,1} equals 1 if x = 1V, and —1
otherwise.

o Threshold function THRK : {—1,1}" — {—1,1} equals 1 for
inputs of Hamming weight less than k, and —1 otherwise.

e Hamming weight is the number of —1 in a given input string.

13
/19‘

Shuchen Zhu Improved Approximate Degree Bounds For k-distinctness



Dual formulation

Find a dual witness I for (ORz o THR},)=". T must satisfy the
following properties:

e Normalization: |||, = 1.
e Pure high degree: There exists a D = Q (N%_ﬁ) such that

for every polynomial p : {—1, 1}RN — R of degree less than
D, we have Y, p(x)['(x) = 0.

e Correlation: Y, I'(x)(ORg o THRE)(x) > 1/3.

e Exponentially little mass on inputs of large Hamming

~/ 3 1
weight: 32 ;1 1ym<n [T(X)] < (2/VR)_Q(RZ ") for al
x ¢ ({—1,1}"")=N (strong dual decay).
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SV DON'T ﬂlTEH IT l\N FIIHTHEH

e We alter A in [BKT18].
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Dual constructions in [BKT18]

Construct three individual dual polynomials 6, ¢ and .

ORRoTHRN_ORR/M o ORg o THRY
A @ \*/ P
(4

Dual block composition %

Let0:{-1,1}" - R,¢: {—1,1}" — R be any functions. Let
x = (xq, ..., X,) where each x; € {—1,1}". Define the dual block
composition 6 x ¢ to be

n

0% ¢(x) = 2"0(sgn(¢(x1)). .. sgn(d(xa))) [T 16()I.
i=1
We need to make sure four conditions of A are satisfied:
normalization, pure high degree, correlation and strong
dual decay.
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Four conditions of dual polynomial A

e Dual block composition generically preserves necessary
conditions for normalization, pure high degree, and dual decay.
e But for correlation it needs novel analysis:
e Usually correlation does not hold automatically after dual
composition.

e Heavily rely on v correlating very well with THRﬁ, in
[BKT18].

e Requiring such high correlation between v and THRﬁ, hurts
the final degree lower bound
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Our modification to A

Our solution to improve correlation: inspired by [Shel2], alter A
again by attaching a polynomial p to it:

M(x) = (0xo*1)")(x) - p(x).

This is a variant of dual composition that improves correlation.

e We modify p to account for refined error notions that arise in
the analysis of k-distinctness.
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Open questions

o Can we do better than our Q(Ni ) lower bound for

k-distinctness? L

e Recall the best upper bound is O(N* 2*72-4) [Bel12].

e Liu and Zhandry [LZ19] showed that the quantum query
complexity of a certain search version of k-distinctness is
@(N%_ﬁ). This may suggest 3 — W is the right
exponent for k-distinctness.

e \We suspect that techniques based on
dual-block-composition have reached their limit.

¢ Intermediate Goal: improve over the long-standing Q(Ng)
lower bound for 3-distinctness.

e A quantum query complexity upper bound for
(log n)-distinctness?
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